
Data Structures
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2022 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Binary Search Trees

© 2022 Arthur Hoskey. All
rights reserved.

Goals

• Define and use the following terminology:
binary tree root descendant
subtree binary search tree

 parent level ancestor

 child height

• Define a binary search tree at the logical
level

• Show what a binary search tree would
look like after a series of insertions and
deletions

© 2022 Arthur Hoskey. All
rights reserved.

Goals

• Implement the following binary search
tree algorithms in C++
 Inserting an element

 Deleting an element

 Retrieving an element

 Modifying an element

 Copying a tree

 Traversing a tree in preorder, inorder, postorder

© 2022 Arthur Hoskey. All
rights reserved.

Goals

• Discuss the Big-O efficiency of a given
binary search tree operation

• Describe an algorithm for balancing a
binary search tree

• Show how a binary tree can be
represented in an array, with implicit
positional links between the elements

• Define the terms full binary tree and
complete binary tree

© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

Trees

Jake’s Pizza Shop

© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

ROOT NODE

Trees
© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

LEAF NODES

Trees
© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

LEVEL 0

Trees
© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

LEVEL 1

Trees
© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

LEVEL 2

Trees
© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

LEFT SUBTREE OF ROOT NODE

Trees
© 2022 Arthur Hoskey. All
rights reserved.

 Owner

 Jake

 Manager Chef

 Brad Carol

 Waitress Waiter Cook Helper
 Joyce Chris Max Len

RIGHT SUBTREE

 OF ROOT NODE
Trees

© 2022 Arthur Hoskey. All
rights reserved.

Binary Tree

Binary Tree

A structure with a unique starting node (the root), in

which each node is capable of having two child nodes

and a unique path exists from the root to every other

node

Root

The top node of a tree structure; a node with no parent

Leaf Node

A tree node that has no children

© 2022 Arthur Hoskey. All
rights reserved.

Binary Tree
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

Binary Tree

1. Unique starting

node (Root)

2. Each node capable

of having two

children

3. Unique path from

root to all other

nodes

77

11 33 56 88

Leaf Nodes

Trees

Why is

this

not a

tree

?

© 2022 Arthur Hoskey. All
rights reserved.

Trees

Why is

this

not a

tree

?

Answer:

No unique path

from root to item D

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree

Binary Search Trees (BST)

Search Property

A binary tree in which the key value in any

node is greater than the key value in the left

child and any of its children and less than the

key value in the right child and any of its

children

A BST is a binary tree with the search property.

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Trees

Each

node is

the

root of a

subtree

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

Is this a binary

search tree?

77

99 33 56 88

Leaf Nodes

Binary Search Tree
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

No!

99 Violates the

search property.

77

99 33 56 88

Leaf Nodes

Binary Search Tree
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

Is this a binary

search tree?

77

11 33 56 88

Leaf Nodes

Binary Search Tree
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

Yes. This is a

binary search tree

77

11 33 56 88

Leaf Nodes

Binary Search Tree

Level

The distance of a node from the root; the root is

level 0.

Height

The maximum level.

© 2022 Arthur Hoskey. All
rights reserved.

Trees

Level

Distance of

a node from

the root

Height

The

maximum

level

© 2022 Arthur Hoskey. All
rights reserved.

Trees

E

Q

L

K V

T A

S

How many leaf

nodes?

© 2022 Arthur Hoskey. All
rights reserved.

Trees

E

Q

L

K V

T A

S

How many leaf

nodes?

Answer: 3

© 2022 Arthur Hoskey. All
rights reserved.

Trees

Descendants

These are the children of a given node. For any

given node, say n, the descendants of n are all

of the children of n and all of the children of the

children of n and so on.

Ancestors

A node is the ancestor of another node if it is

the parent of that node, or the parent of some

other ancestor of that node.

© 2022 Arthur Hoskey. All
rights reserved.

Trees

E

Q

L

K V

T A

S

E has how many

descendants?

© 2022 Arthur Hoskey. All
rights reserved.

Trees

E

Q

L

K V

T A

S

E has how many

descendants?

Answer: 3

© 2022 Arthur Hoskey. All
rights reserved.

Trees

E

Q

L

K V

T A

S

V has how many

ancestors?

© 2022 Arthur Hoskey. All
rights reserved.

Trees

E

Q

L

K V

T A

S

V has how many

ancestors?

Answer: 3

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree

What operations would be appropriate for a
binary search tree?

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree
© 2022 Arthur Hoskey. All
rights reserved.

 Transformers
◦ InsertItem
◦ DeleteItem

 Observers
◦ IsEmpty
◦ IsFull
◦ GetLength
◦ RetrieveItem
◦ Print

change state

observe state

Binary Search Tree (linked)

 What member variables do we
need for a linked implementation?

© 2022 Arthur Hoskey. All
rights reserved.

Tree Interface

 Here is the Tree Interface we will be using:

public interface Tree {
 public void insertItem(int item);
 public void deleteItem(int item);
 public boolean hasItem(int target);
 public int retrieveItem(int target) throws Exception;
 public void makeEmpty();
 public int getLength();
}

© 2022 Arthur Hoskey. All
rights reserved.

BinarySearchTree Class

 We will write a BinarySearchTree class that
implements our Tree interface.

public class BinarySearchTree implements Tree

{

 // Implementation code goes here

}

© 2022 Arthur Hoskey. All
rights reserved.

Node

 The binary search tree data structure requires that we
keep more information at EACH place inside of it.

 Each item in the tree will be a "Node" (not just the data).

 A node stores the data and a reference to the next node

 It should be defined as an inner class within the binary
search tree class.

class Node {
 Declare int data
 Declare Node left
 Declare Node right
}

© 2022 Arthur Hoskey. All
rights reserved.

Node

 Picture of a tree node

© 2022 Arthur Hoskey. All
rights reserved.

BinarySearchTree Class Member
Variables

 Tree private members

public class BinarySearchTree implements Tree {

 Declare Node root

 // Public members go here…

}

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree (linked)

getLength() returns int

 return getLength(root)

getLength(Node tree) returns int

 if (tree equals null)

 return 0

 return getLength(tree.left) + getLength(tree.right) + 1

1. Get left subtree

length

2. Get right subtree

length

3. Add 1 for the

current node

Call the recursive

getLength
What should

the access

modifiers be for

each

getLength?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

 Now we will walk through
searching for items in the tree…

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Are ‘D’, ‘Q’, and ‘N’ in the tree?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’How does a search D proceed?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

Is root = ‘D’?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

Is root = ‘D’?

NO. Where do

we go now?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

If ‘D’ is < root then

go left otherwise

go right

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘D’ is < root so

follow the left

child

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘E’ is the “root”

of a subtree

Does ‘D’ = ‘E’ ?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘E’ is the “root”

of a subtree
Does ‘D’ = ‘E’ ?

NO. Now where

do we go

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘A’ is the “root”

of a subtree

‘D’ < ‘E’ so go left

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘A’ is the “root”

of a subtree

Does ‘D’ = ‘A?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘A’ is the “root”

of a subtree
Does ‘D’ = ‘A?

NO. So now where

do we go?

© 2022 Arthur Hoskey. All
rights reserved.

‘D’

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’

‘Q’‘L’‘B’

‘S’Always check the root first

‘D’ is the “root”

of a subtree

Go to the right child

of ‘A’

© 2022 Arthur Hoskey. All
rights reserved.

‘D’

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’

‘Q’‘L’‘B’

‘S’Always check the root first

‘D’ is the “root”

of a subtree

Does ‘D’ = ‘D’ . Yes,

so we are done

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree (linked)

retrieveItem(Node tree, int target) returns int

 if (tree equals null)

 return Integer.MIN_VALUE

 else if (target < tree.data)

 return retrieveItem(tree.left, target)

 else if (target > tree.data)

 return retrieveItem(tree.right, target)

 else

 return tree.data

Check the left subtree

FOUND IT!!!

At bottom of tree

so item not there

Check the right

subtree

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree (linked)

 IsFull

 Similar to IsFull for the linked implementations of the other
data structures we have covered.

 IsEmpty

 Similar to IsEmpty for the linked implementations of the
other data structures we have covered.

© 2022 Arthur Hoskey. All
rights reserved.

Binary Search Tree (linked)

Insert

Now we will insert items into a binary search tree…

© 2022 Arthur Hoskey. All
rights reserved.

Shape depends on the order of item
insertion

Insert the elements ‘J’ ‘E’ ‘F’ ‘T’ ‘A’
in that order

The first value inserted is always put in
the root

Shape of BST

‘J’

© 2022 Arthur Hoskey. All
rights reserved.

 Thereafter, each value to be inserted

 compares itself to the value in the root node

 moves left it is less or

 moves right if it is greater

 When does the process stop?

Shape of BST

‘J’

‘E’

© 2022 Arthur Hoskey. All
rights reserved.

 Trace path to insert ‘F’

Shape of BST

‘J’

‘E’

‘F’

© 2022 Arthur Hoskey. All
rights reserved.

 Trace path to insert ‘T’

Shape of BST

‘J’

‘E’

‘F’

‘T’

© 2022 Arthur Hoskey. All
rights reserved.

 Trace path to insert ‘A’

Shape of BST

‘J’

‘E’

‘F’

‘T’

‘A’

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

And the moral is?

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

‘A’

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

‘A’

‘E’

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

‘A’

‘E’

‘F’

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

‘A’

‘E’

‘F’

‘J’

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

‘A’

‘E’

‘F’

‘J’

‘T’

What is the

problem with

this shape???

© 2022 Arthur Hoskey. All
rights reserved.

Now build tree by inserting ‘A’ ‘E’ ‘F’
‘J’ ‘T’ in that order

Shape of BST

‘A’

‘E’

‘F’

‘J’

‘T’

Degenerated

into a list

because of

insertion order!

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Insertion
© 2022 Arthur Hoskey. All
rights reserved.

Recursive Insertion

insertItem(int item)

 root = insertItem(root, item)

insertItem(Node tree, int item) returns Node

 if (tree equals null)

 return new Node instance with item in it

 if (item < tree.data)

 // Set left child to the node that is returned

 Set tree.left to insertItem(tree.left, item)

 else if (item > tree.data)

 // Set right child to the node that is returned

 Set tree.right to insertItem(tree.right, item)

 return tree

© 2022 Arthur Hoskey. All
rights reserved.

insertItem(int) – Public method

insertItem(Node, int) – Private

helper method

Binary Search Tree (linked)

Delete

Now we will delete items from a binary search
tree…

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

Delete ‘Z’

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

Delete ‘R’

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

Delete ‘Q’

What is going

on here???

Will explain

soon.

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

 Can you summarize the three deletion
cases?

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

Three Deletion Cases
1. Leaf – Delete node is a leaf. Delete the node and

set the child pointer of parent to null.

2. One child – Delete node has one child. Delete the
node and fix the child pointer of the parent to point
to the appropriate child of the node to be deleted.

3. Two children – Delete node has two children. Copy
the data from the predecessor into the node to be
deleted. The predecessor is the largest value in the
left subtree of the node to be deleted. Finally,
delete the predcessor node.

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

Delete ‘Q’

P is the

pred of Q.

Search

property is

preserved

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

Delete Pseudocode for When Node is Found
if (Left(tree) is NOT NULL) AND (Right(tree) is NOT NULL)

 Find predecessor

 Set Info(tree) to Info(predecessor)

 Delete predecessor

else if Left(tree) is NOT NULL

 Set tree to Left(tree)

else if Right(tree) is NOT NULL

 Set tree to Right(tree)

else

 Set tree to NULL

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

public Node deleteItem(Node tree, int item) {

 if (tree == null) {

 return null;

 } else if (item < tree.data) {

 tree.left = deleteItem(tree.left, item);

 } else if (item > tree.data) {

 tree.right = deleteItem(tree.right, item);

 } else {

 if (tree.left != null && tree.right != null) {

 Node predNode = findPredecessorNode(tree.left);

 tree.data = predNode.data;

 tree.left = deleteItem(tree.left, predNode.data);

 } else if (tree.left != null) {

 tree = tree.left;

 } else if (tree.right != null) {

 tree = tree.right;

 } else {

 tree = null;

 }

 }

 return tree;

}

Deleting node

with two child

Copy pred

Delete pred

Deleting node with one child

Set tree to the child (tree

gets returned at end of

method)

Deleting Leaf. If we get

here, then we are

deleting a leaf node

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion

private Node findPredecessorNode(Node tree)

{

 Node current = tree;

 while (current.right != null)

 {

 current = current.right;

 }

 return current;

}

Keep going to the

right in the tree

© 2022 Arthur Hoskey. All
rights reserved.

Recursive Deletion
© 2022 Arthur Hoskey. All
rights reserved.

In-Class Problem

 Do in-class problem for binary
search tree.

© 2022 Arthur Hoskey. All
rights reserved.

Clearing The Tree

 How do we clear the tree?

 Here is makeEmpty()…

© 2022 Arthur Hoskey. All
rights reserved.

Clearing The Tree

 Let the garbage collector handle releasing all children of the
root (they will all eventually be garbage collected).

makeEmpty()

 Set root to null

© 2022 Arthur Hoskey. All
rights reserved.

Clearing The Tree

makeEmpty()

 makeEmpty(root)

 root = null

makeEmpty(Node tree)

 if (tree not equal to null)

 makeEmpty(tree.left)

 makeEmpty(tree.right)

 Set tree to null

Clear the left subtree

Make the current node a

candidate for garbage collection

Clear the right subtree

This is what you would do

to explicitly release each

node (postorder traversal)

© 2022 Arthur Hoskey. All
rights reserved.

Traversals - REVIEW

Traversal (Unsorted List) - REVIEW

 Visit all nodes of the data structure

 How do you traverse an unsorted list that uses a
linked implementation?

© 2022 Arthur Hoskey. All
rights reserved.

Traversals - REVIEW

Traversal (Unsorted List) - REVIEW

 Visit all nodes of the data structure

 How do you traverse an unsorted list that uses a
linked implementation?

 ANSWER

 1. Create a temporary pointer that points to the
start of the list.

 2. Use that pointer to "visit" each node on the list.

 3. Keep going until that pointer is null. If the
pointer is null, then you reached the end of the list.

© 2022 Arthur Hoskey. All
rights reserved.

Traversals

Traversal (Binary Search Tree)

 Visit all nodes of the data structure

 How do you traverse a binary search tree
that uses a linked implementation?

© 2022 Arthur Hoskey. All
rights reserved.

Traversals

Traversal

 Visit all nodes of the data structure

 How do you traverse a binary search tree that
uses a linked implementation?

 ANSWER
 There are three common ways to traverse a

binary search tree.
 1. Inorder
 2. Preorder
 3. Postorder

© 2022 Arthur Hoskey. All
rights reserved.

Traversals

 Will traverse the binary search tree recursively.

 Inorder – Process the left subtree
(recursively) then "visit" the current node then
process the right subtree (recursively)

 Preorder – "Visit" the current node then
process the left subtree (recursively) then
process the right subtree (recursively).

 Postorder – Process the left subtree
(recursively) then process the right subtree
recursively then "visit" the current node.

© 2022 Arthur Hoskey. All
rights reserved.

Traversals

 The pre-, post-, and in- refer to when the current
node is processed with respect to the left and right
subtrees.

 Preorder - Current node is processed BEFORE the
left and right subtrees.

 Postorder - Current node is processed AFTER the
left and right subtrees.

 Inorder - Current node is processed AFTER the left
subtree but BEFORE the right subtree. Inorder will
have the effect of "visiting" each node according to
the order of the key of the tree.

© 2022 Arthur Hoskey. All
rights reserved.

Traversals

Inorder(tree)

if tree is not NULL

 Inorder(Left(tree))

 Visit Info(tree)

 Inorder(Right(tree))

PostOrder(tree)

if tree is not NULL

 Postorder(Left(tree))

 Postorder(Right(tree)

 Visit Info(tree)

PreOrder(tree)

if tree is not NULL

 Visit Info(tree)

 Preorder(Left(tree))

 Preorder(Right(tree))

© 2022 Arthur Hoskey. All
rights reserved.

Traversals

Each node

is visited

three times

© 2022 Arthur Hoskey. All
rights reserved.

Traversals
© 2022 Arthur Hoskey. All
rights reserved.

Depth-First Traversal

 Depth-First Traversal – Go as deep as you
can then backtrack.

 Instead of recursion you can use a stack to
help with traversal.

 Note: Inorder, preorder, and postorder
traversals are examples of depth-first
traversals.

© 2022 Arthur Hoskey. All
rights reserved.

Depth-First Traversal

DepthFirstTraversal w/Stack (preorder)

stack.Push(root)

do

 stack.Pop(node)

 Visit node

 Push all children of node onto stack

while !stack.IsEmpty()

Put root on stack

Take the top node off the stack

Push node's children on stack

Keep going while

stack is not empty

Note: Could use recursive

methods instead of stack.

© 2022 Arthur Hoskey. All
rights reserved.

Depth-First Traversal
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52
1

77

11 33 56 88

Leaf Nodes

2

3 4

5

6 7

Depth First Order (preorder)

52, 21, 11, 33, 77, 56, 88
Depth First

Always keeping going

as deep as possible

into the tree

Red numbers show

order the nodes are

visited. This ordering

assumes right

children are pushed

on the stack first.

Breadth-First Traversal

 Breadth-First Traversal – Process all nodes
in one level then move on to nodes in the next
level.

 Use a queue to help with traversal.

© 2022 Arthur Hoskey. All
rights reserved.

Breadth-First Traversal

BreadthFirstTraversal

queue.Enqueue(root)

do

 queue.Dequeue(node)

 Visit node

 Enqueue all children of node onto queue

while !queue.IsEmpty()

Put root on queue

Take the front node off the queue

Add node's children to the

end of queue

Keep going while

queue is not empty

© 2022 Arthur Hoskey. All
rights reserved.

Breadth-First Traversal
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52
1

77

11 33 56 88

Leaf Nodes

2

4 5

3

6 7

Breadth First Order

52, 21, 77, 11, 33, 56, 88
Breadth First

Process one whole

level of tree then move

on to the next level

Red numbers show

order the nodes are

visited. This ordering

assumes left children

are added to the

queue first.

Traversals Practice
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

Show Output

1. Inorder

2. Preorder

3. Postorder

77

11 33 56 88

Leaf Nodes

Traversals Practice
© 2022 Arthur Hoskey. All
rights reserved.

Root

21

52

Show Output

1. Inorder

11, 21, 33, 52, 56, 77, 88

2. Preorder

52, 21, 11, 33, 77, 56, 88

3. Postorder

11, 33, 21, 56, 88, 77, 52

77

11 33 56 88

Leaf Nodes

End of Slides

 End of Slides

© 2022 Arthur Hoskey. All
rights reserved.

	Slide 1: Data Structures
	Slide 2: Today’s Lecture
	Slide 3: Goals
	Slide 4: Goals
	Slide 5: Goals
	Slide 6: Trees
	Slide 7: Trees
	Slide 8: Trees
	Slide 9: Trees
	Slide 10: Trees
	Slide 11: Trees
	Slide 12: Trees
	Slide 13: Trees
	Slide 14: Binary Tree
	Slide 15: Binary Tree
	Slide 16: Trees
	Slide 17: Trees
	Slide 18: Binary Search Tree
	Slide 19: Binary Search Trees
	Slide 20: Binary Search Tree
	Slide 21: Binary Search Tree
	Slide 22: Binary Search Tree
	Slide 23: Binary Search Tree
	Slide 24: Binary Search Tree
	Slide 25: Trees
	Slide 26: Trees
	Slide 27: Trees
	Slide 28: Trees
	Slide 29: Trees
	Slide 30: Trees
	Slide 31: Trees
	Slide 32: Trees
	Slide 33: Binary Search Tree
	Slide 34: Binary Search Tree
	Slide 35: Binary Search Tree (linked)
	Slide 36: Tree Interface
	Slide 37: BinarySearchTree Class
	Slide 38: Node
	Slide 39: Node
	Slide 40: BinarySearchTree Class Member Variables
	Slide 41: Binary Search Tree (linked)
	Slide 42: Recursive Search
	Slide 43: Recursive Search
	Slide 44: Recursive Search
	Slide 45: Recursive Search
	Slide 46: Recursive Search
	Slide 47: Recursive Search
	Slide 48: Recursive Search
	Slide 49: Recursive Search
	Slide 50: Recursive Search
	Slide 51: Recursive Search
	Slide 52: Recursive Search
	Slide 53: Recursive Search
	Slide 54: Recursive Search
	Slide 55: Recursive Search
	Slide 56: Binary Search Tree (linked)
	Slide 57: Binary Search Tree (linked)
	Slide 58: Binary Search Tree (linked)
	Slide 59: Shape of BST
	Slide 60: Shape of BST
	Slide 61: Shape of BST
	Slide 62: Shape of BST
	Slide 63: Shape of BST
	Slide 64: Shape of BST
	Slide 65: Shape of BST
	Slide 66: Shape of BST
	Slide 67: Shape of BST
	Slide 68: Shape of BST
	Slide 69: Shape of BST
	Slide 70: Shape of BST
	Slide 71: Recursive Insertion
	Slide 72: Recursive Insertion
	Slide 73: Binary Search Tree (linked)
	Slide 74: Recursive Deletion
	Slide 75: Recursive Deletion
	Slide 76: Recursive Deletion
	Slide 77: Recursive Deletion
	Slide 78: Recursive Deletion
	Slide 79: Recursive Deletion
	Slide 80: Recursive Deletion
	Slide 81: Recursive Deletion
	Slide 82: Recursive Deletion
	Slide 83: Recursive Deletion
	Slide 84: In-Class Problem
	Slide 85: Clearing The Tree
	Slide 86: Clearing The Tree
	Slide 87: Clearing The Tree
	Slide 88: Traversals - REVIEW
	Slide 89: Traversals - REVIEW
	Slide 90: Traversals
	Slide 91: Traversals
	Slide 92: Traversals
	Slide 93: Traversals
	Slide 94: Traversals
	Slide 95: Traversals
	Slide 96: Traversals
	Slide 97: Depth-First Traversal
	Slide 98: Depth-First Traversal
	Slide 99: Depth-First Traversal
	Slide 100: Breadth-First Traversal
	Slide 101: Breadth-First Traversal
	Slide 102: Breadth-First Traversal
	Slide 103: Traversals Practice
	Slide 104: Traversals Practice
	Slide 105: End of Slides

