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Today’s Lecture

 Binary Search Trees
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Goals

• Define and use the following terminology: 
binary tree root  descendant 
subtree binary search tree   

 parent  level ancestor 

 child  height

• Define a binary search tree at the logical 
level

• Show what a binary search tree would 
look like after a series of insertions and 
deletions
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Goals

• Implement the following binary search 
tree algorithms in C++
 Inserting an element

 Deleting an element

 Retrieving an element

 Modifying an element

 Copying a tree

 Traversing a tree in preorder, inorder, postorder
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Goals

• Discuss the Big-O efficiency of a given 
binary search tree operation

• Describe an algorithm for balancing a 
binary search tree

• Show how a binary tree can be 
represented in an array, with implicit 
positional links between the elements

• Define the terms full binary tree and 
complete binary tree
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        Owner 

          Jake

                   Manager                           Chef 

        Brad             Carol

  Waitress                              Waiter                   Cook                        Helper 
    Joyce                                 Chris                      Max                            Len

Trees

Jake’s Pizza Shop
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          Jake

                   Manager                           Chef 

        Brad             Carol

  Waitress                              Waiter                   Cook                        Helper 
    Joyce                                 Chris                      Max                            Len

ROOT NODE

Trees
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        Owner 

          Jake

                   Manager                           Chef 

        Brad             Carol

  Waitress                              Waiter                   Cook                        Helper 
    Joyce                                 Chris                      Max                            Len

LEAF NODES

Trees
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LEVEL 0

Trees
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LEVEL 1

Trees
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                   Manager                           Chef 

        Brad             Carol

  Waitress                              Waiter                   Cook                        Helper 
    Joyce                                 Chris                      Max                            Len

LEVEL 2

Trees
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        Owner 

          Jake

                   Manager                           Chef 

        Brad             Carol

  Waitress                              Waiter                   Cook                        Helper 
    Joyce                                 Chris                      Max                            Len

LEFT SUBTREE OF ROOT NODE

Trees
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        Owner 

          Jake

                   Manager                           Chef 

        Brad             Carol

  Waitress                              Waiter                   Cook                        Helper 
    Joyce                                 Chris                      Max                            Len

RIGHT SUBTREE

 OF ROOT NODE
Trees
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Binary Tree

Binary Tree

A structure with a unique starting node (the root), in 

which each node is capable of having two child nodes 

and a unique path exists from the root to every other 

node

Root

The top node of a tree structure; a node with no parent

Leaf Node 

A tree node that has no children
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Binary Tree
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Root

21

52

Binary  Tree

1. Unique starting 

node (Root)

2. Each node capable 

of having two 

children

3. Unique path from 

root to all other 

nodes

77

11 33 56 88

Leaf Nodes



Trees

Why is

this 

not a

tree

?
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Trees

Why is

this 

not a

tree

?

Answer:

No unique path 

from root to item D
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Binary Search Tree

Binary Search Trees (BST)

Search Property

A binary tree in which the key value in any 

node is greater than the key value in the left 

child and any of its children and less than the 

key value in the right child and any of its 

children

A BST is a binary tree with the search property.
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Binary Search Trees

Each

node is

the

root of a

subtree
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Binary Search Tree
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Root

21

52

Is this a binary 

search tree?

77

99 33 56 88

Leaf Nodes



Binary Search Tree
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Root

21

52

No! 

99 Violates the 

search property.

77

99 33 56 88

Leaf Nodes



Binary Search Tree
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Root

21

52

Is this a binary 

search tree?

77

11 33 56 88

Leaf Nodes



Binary Search Tree
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Root

21

52

Yes. This is a 

binary search tree

77

11 33 56 88

Leaf Nodes



Binary Search Tree

Level

The distance of a node from the root; the root is 

level 0.

Height

The maximum level.
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Trees

Level

Distance of

a node from

the root

Height

The 

maximum

level
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Trees

E   

Q   

L   

K V   

T   A 

S   

How many leaf 

nodes?
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Trees

E   

Q   

L   

K V   

T   A 

S   

How many leaf 

nodes?

Answer: 3
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Trees

Descendants 

These are the children of a given node. For any 

given node, say n, the descendants of n are all 

of the children of n and all of the children of the 

children of n and so on.

Ancestors

A node is the ancestor of another node if it is 

the parent of that node, or the parent of some 

other ancestor of that node.
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Trees

E   

Q   

L   

K V   

T   A 

S   

E has how many

descendants?
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Trees

E   

Q   

L   

K V   

T   A 

S   

E has how many

descendants?

Answer: 3
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Trees

E   

Q   

L   

K V   

T   A 

S   

V has how many

ancestors?
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Trees

E   

Q   

L   

K V   

T   A 

S   

V has how many

ancestors?

Answer: 3
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Binary Search Tree

What operations would be appropriate for a 
binary search tree?
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Binary Search Tree
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 Transformers 
◦ InsertItem
◦ DeleteItem

 Observers 
◦ IsEmpty
◦ IsFull
◦ GetLength
◦ RetrieveItem
◦ Print

change state

observe state



Binary Search Tree (linked)

 What member variables do we 
need for a linked implementation?
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Tree Interface

 Here is the Tree Interface we will be using:

public interface Tree {
    public void insertItem(int item);
    public void deleteItem(int item);
    public boolean hasItem(int target);
    public int retrieveItem(int target) throws Exception;
    public void makeEmpty();
    public int getLength();
}
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BinarySearchTree Class

 We will write a BinarySearchTree class that 
implements our Tree interface. 

public class BinarySearchTree implements Tree

{

   // Implementation code goes here

}
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Node

 The binary search tree data structure requires that we 
keep more information at EACH place inside of it.

 Each item in the tree will be a "Node" (not just the data).

 A node stores the data and a reference to the next node

 It should be defined as an inner class within the binary 
search tree class.

class Node {
   Declare int data   
   Declare Node left
   Declare Node right
}
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Node

 Picture of a tree node
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BinarySearchTree Class Member 
Variables

 Tree private members

public class BinarySearchTree implements Tree {

    Declare Node root

    

    // Public members go here…

}
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Binary Search Tree (linked)

getLength() returns int

   return getLength(root)

getLength(Node tree) returns int

    if (tree equals null)

        return 0

    

    return getLength(tree.left) + getLength(tree.right) + 1

1. Get left subtree 

length

2. Get right subtree 

length

3. Add 1 for the 

current node

Call the recursive 

getLength
What should 

the access 

modifiers be for 

each 

getLength?
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Recursive Search

 Now we will walk through 
searching for items in the tree…
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Are ‘D’, ‘Q’, and ‘N’ in the tree? 
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’How does a search D proceed?
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

Is root = ‘D’?
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

Is root = ‘D’?

NO. Where do 

we go now?
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

If ‘D’ is < root then 

go left otherwise 

go right
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘D’ is < root so 

follow the left 

child
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘E’ is the “root” 

of a subtree

Does ‘D’ = ‘E’ ?
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘E’ is the “root” 

of a subtree
Does ‘D’ = ‘E’ ?

NO. Now where 

do we go
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘A’ is the “root” 

of a subtree

‘D’ < ‘E’ so go left
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘A’ is the “root” 

of a subtree

Does ‘D’  =  ‘A?
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Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’‘D’

‘Q’‘L’‘B’

‘S’Always check the root first

‘A’ is the “root” 

of a subtree
Does ‘D’  =  ‘A?

NO. So now where 

do we go?
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‘D’
 

 

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’

‘Q’‘L’‘B’

‘S’Always check the root first

‘D’ is the “root” 

of a subtree

Go to the right child 

of ‘A’
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‘D’
 

 

Recursive Search

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’

‘K’

‘V’

‘P’ ‘Z’

‘Q’‘L’‘B’

‘S’Always check the root first

‘D’ is the “root” 

of a subtree

Does ‘D’  = ‘D’ . Yes, 

so we are done
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Binary Search Tree (linked)

retrieveItem(Node tree, int target) returns int

   if (tree equals null) 

      return Integer.MIN_VALUE

   

   else if (target < tree.data) 

      return retrieveItem(tree.left, target)

  

   else if (target > tree.data)

      return retrieveItem(tree.right, target)

   else 

      return tree.data

Check the left subtree

FOUND IT!!!

At bottom of tree 

so item not there

Check the right 

subtree
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Binary Search Tree (linked)

 IsFull

 Similar to IsFull for the linked implementations of the other 
data structures we have covered.

 IsEmpty

 Similar to IsEmpty for the linked implementations of the 
other data structures we have covered.
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Binary Search Tree (linked)

Insert

Now we will insert items into a binary search tree…
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Shape depends on the order of item 
insertion

Insert the elements   ‘J’   ‘E’   ‘F’  ‘T’  ‘A’    
in that order

The first value inserted is always put in 
the root

Shape of BST

‘J’
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 Thereafter, each value to be inserted 

  compares itself to the value in the root node

  moves left it is less or 

  moves right if it is greater

 When does the process stop?

Shape of BST

‘J’

‘E’
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 Trace path to insert ‘F’

Shape of BST

‘J’

‘E’

‘F’
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 Trace path to insert ‘T’

Shape of BST

‘J’

‘E’

‘F’

‘T’
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 Trace path to insert ‘A’

Shape of BST

‘J’

‘E’

‘F’

‘T’

‘A’
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

And the moral is?
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

‘A’
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

‘A’

‘E’
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

‘A’

‘E’

‘F’
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

‘A’

‘E’

‘F’

‘J’
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

‘A’

‘E’

‘F’

‘J’

‘T’

What is the 

problem with 

this shape???
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Now build tree by inserting ‘A’   ‘E’   ‘F’  
‘J’  ‘T’  in that order

Shape of BST

‘A’

‘E’

‘F’

‘J’

‘T’

Degenerated 

into a list 

because of 

insertion order!

© 2022 Arthur Hoskey. All 
rights reserved.



Recursive Insertion
© 2022 Arthur Hoskey. All 
rights reserved.



Recursive Insertion

insertItem(int item)

    root = insertItem(root, item)

insertItem(Node tree, int item) returns Node

    if (tree equals null)

        return new Node instance with item in it

    

    if (item < tree.data)

        // Set left child to the node that is returned

        Set tree.left to insertItem(tree.left, item)

    else if (item > tree.data)

        // Set right child to the node that is returned

        Set tree.right to insertItem(tree.right, item)

    

    return tree
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rights reserved.

insertItem(int) – Public method

insertItem(Node, int) – Private 

helper method



Binary Search Tree (linked)

Delete

Now we will delete items from a binary search 
tree…
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Recursive Deletion

Delete ‘Z’
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Recursive Deletion

Delete ‘R’
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Recursive Deletion

Delete ‘Q’

What is going 

on here???

Will explain 

soon.
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Recursive Deletion

 Can you summarize the three deletion 
cases? 
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Recursive Deletion

Three Deletion Cases
1. Leaf – Delete node is a leaf. Delete the node and 

set the child pointer of parent to null.

2. One child – Delete node has one child. Delete the 
node and fix the child pointer of the parent to point 
to the appropriate child of the node to be deleted.

3. Two children – Delete node has two children. Copy 
the data from the predecessor into the node to be 
deleted. The predecessor is the largest value in the 
left subtree of the node to be deleted. Finally, 
delete the predcessor node.
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Recursive Deletion

Delete ‘Q’

P is the 

pred of Q.

Search 

property is 

preserved
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Recursive Deletion

Delete Pseudocode for When Node is Found
if (Left(tree) is NOT NULL) AND (Right(tree) is NOT NULL)

 Find predecessor

 Set Info(tree) to Info(predecessor)

 Delete predecessor 

else if Left(tree) is NOT NULL

 Set tree to Left(tree)

else if Right(tree) is NOT NULL

 Set tree to Right(tree)

else

 Set tree to NULL
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Recursive Deletion

public Node deleteItem(Node tree, int item) {

    if (tree == null) {

        return null;

    } else if (item < tree.data) {

        tree.left = deleteItem(tree.left, item);

    } else if (item > tree.data) {

        tree.right = deleteItem(tree.right, item);

    } else {

       if (tree.left != null && tree.right != null) {

            Node predNode = findPredecessorNode(tree.left);

            tree.data = predNode.data;

            tree.left = deleteItem(tree.left, predNode.data);

        } else if (tree.left != null) {

            tree = tree.left;

        } else if (tree.right != null) {

            tree = tree.right;

        } else {

           tree = null;

        }

    }

    return tree;

}

Deleting node 

with two child

Copy pred 

Delete pred 

Deleting node with one child

Set tree to the child (tree 

gets returned at end of 

method)

Deleting Leaf. If we get 

here, then we are 

deleting a leaf node
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Recursive Deletion

private Node findPredecessorNode(Node tree)

{

    Node current = tree;

    while (current.right != null)

    {

        current = current.right;

    }

    return current;

}

Keep going to the 

right in the tree
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Recursive Deletion
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In-Class Problem

 Do in-class problem for binary 
search tree.
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Clearing The Tree

 How do we clear the tree?

 Here is makeEmpty()…
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Clearing The Tree

 Let the garbage collector handle releasing all children of the 
root (they will all eventually be garbage collected).

makeEmpty()

 Set root to null
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Clearing The Tree

makeEmpty()

 makeEmpty(root)

 root = null

makeEmpty(Node tree)

 if (tree not equal to null)

  makeEmpty(tree.left)   

  makeEmpty(tree.right)   

  Set tree to null

Clear the left subtree

Make the current node a 

candidate for garbage collection

Clear the right subtree

This is what you would do 

to explicitly release each 

node (postorder traversal)
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Traversals - REVIEW

Traversal (Unsorted List) - REVIEW

 Visit all nodes of the data structure

 How do you traverse an unsorted list that uses a 
linked implementation?
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Traversals - REVIEW

Traversal (Unsorted List) - REVIEW

 Visit all nodes of the data structure

 How do you traverse an unsorted list that uses a 
linked implementation?

 

 ANSWER

 1. Create a temporary pointer that points to the 
start of the list.

 2. Use that pointer to "visit" each node on the list.

 3. Keep going until that pointer is null. If the 
pointer is null, then you reached the end of the list.
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Traversals

Traversal (Binary Search Tree)

 Visit all nodes of the data structure

 How do you traverse a binary search tree 
that uses a linked implementation?
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Traversals

Traversal

 Visit all nodes of the data structure

 How do you traverse a binary search tree that 
uses a linked implementation?

 ANSWER
 There are three common ways to traverse a 

binary search tree.
 1. Inorder
 2. Preorder
 3. Postorder
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Traversals

 Will traverse the binary search tree recursively.

 Inorder – Process the left subtree 
(recursively) then "visit" the current node then 
process the right subtree (recursively)

 Preorder – "Visit" the current node then 
process the left subtree (recursively) then 
process the right subtree (recursively).

 Postorder – Process the left subtree 
(recursively) then process the right subtree 
recursively then "visit" the current node.
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Traversals

 The pre-, post-, and in- refer to when the current 
node is processed with respect to the left and right 
subtrees.

 Preorder - Current node is processed BEFORE the 
left and right subtrees.

 Postorder - Current node is processed AFTER the 
left and right subtrees.

 Inorder - Current node is processed AFTER the left 
subtree but BEFORE the right subtree. Inorder will 
have the effect of "visiting" each node according to 
the order of the key of the tree.
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Traversals

Inorder(tree)

if tree is not NULL

 Inorder(Left(tree))

 Visit Info(tree)

 Inorder(Right(tree))

PostOrder(tree)

if tree is not NULL

 Postorder(Left(tree))

 Postorder(Right(tree)

 Visit Info(tree)

PreOrder(tree)

if tree is not NULL

 Visit Info(tree)

 Preorder(Left(tree))

 Preorder(Right(tree))

© 2022 Arthur Hoskey. All 
rights reserved.



Traversals

Each node

is  visited

three times
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Traversals
© 2022 Arthur Hoskey. All 
rights reserved.



Depth-First Traversal

 Depth-First Traversal – Go as deep as you 
can then backtrack.

 Instead of recursion you can use a stack to 
help with traversal.

 Note: Inorder, preorder, and postorder 
traversals are examples of depth-first 
traversals.
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Depth-First Traversal

DepthFirstTraversal w/Stack (preorder)

stack.Push(root)

do

 stack.Pop(node)

 Visit node

 Push all children of node onto stack

while !stack.IsEmpty()

Put root on stack

Take the top node off the stack

Push node's children on stack

Keep going while 

stack is not empty

Note: Could use recursive 

methods instead of stack.
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Depth-First Traversal
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Root

21

52
1

77

11 33 56 88

Leaf Nodes

2

3 4

5

6 7

Depth First Order (preorder)

52, 21, 11, 33, 77, 56, 88
Depth First

Always keeping going 

as deep as possible 

into the tree

Red numbers show 

order the nodes are 

visited. This ordering 

assumes right 

children are pushed 

on the stack first.



Breadth-First Traversal

 Breadth-First Traversal – Process all nodes 
in one level then move on to nodes in the next 
level.

 Use a queue to help with traversal.

© 2022 Arthur Hoskey. All 
rights reserved.



Breadth-First Traversal

BreadthFirstTraversal

queue.Enqueue(root)

do

 queue.Dequeue(node)

 Visit node

 Enqueue all children of node onto queue

while !queue.IsEmpty()

Put root on queue

Take the front node off the queue

Add node's children to the 

end of queue

Keep going while 

queue is not empty

© 2022 Arthur Hoskey. All 
rights reserved.



Breadth-First Traversal
© 2022 Arthur Hoskey. All 
rights reserved.

Root

21

52
1

77

11 33 56 88

Leaf Nodes

2

4 5

3

6 7

Breadth First Order

52, 21, 77, 11, 33, 56, 88
Breadth First

Process one whole 

level of tree then move 

on to the next level

Red numbers show 

order the nodes are 

visited. This ordering 

assumes left children 

are added to the 

queue first.



Traversals Practice
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Root

21

52

Show Output

1. Inorder

2. Preorder

3. Postorder

77

11 33 56 88

Leaf Nodes



Traversals Practice
© 2022 Arthur Hoskey. All 
rights reserved.

Root

21

52

Show Output

1. Inorder

11, 21, 33, 52, 56, 77, 88

2. Preorder

52, 21, 11, 33, 77, 56, 88

3. Postorder

11, 33, 21, 56, 88, 77, 52

77

11 33 56 88

Leaf Nodes



End of Slides

 End of Slides
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